Updated:

Rational Functions and Their Real-World Applications Essay

Exclusively available on Available only on IvyPanda® Made by Human No AI

Introduction

To be considered rational, a function must be a ratio of polynomials, with the denominator’s polynomial, not equal to zero. This is a definition of a rational number of the form p/q, where q≠0. A wide variety of real-world contexts use rational functions (Peraro, 2019). Rational functions describe the connection between velocity, range, and time, but they also find extensive application in the fields of medicine and engineering.

Additionally, a rational function is a function that may be written as the ratio of other functions, specifically polynomials. When a function has only one variable, x, it is said to be rational if it can be expressed as f(x) = p(x)/q(x), where p(x) and q(x) are polynomials with values that are not equal to zero and q(x) is less than p(x) (Lokot et al., 2021). A rational function is denoted by the formula f(x) = (x2 + x – 2) / (2x2 – 2x – 3), for instance, and in this case, 2x2 – 2x – 3≠0. Moreover, the numerators of a rational function can be constants because every constant is a polynomial.

When it comes to rational graphing functions, knowing about their asymptotes is a highly vital subject under the belt. A line or curve is said to have an asymptote when it moves inexorably closer to the curve over time but never actually meets (Lokot et al., 2021). A good illustration of an asymptote can be found in Figure 1. Three kinds of asymptotes can occur in rational functions: horizontal, vertical, and oblique asymptotes.

Asymptotes
Figure 1: Asymptotes

Horizontal Asymptotes

This indicates that the asymptote is horizontal, or in other words, parallel to the axis that represents the variable that is being controlled. A horizontal asymptote for R(x) is only possible if the degree of P(x) is greater than the degree of Q. (x) (D’Hoker et al., 2019). Divide the numerator and the denominator of R(x) to find the asymptotes of the function. The next step is determining the value R(x) approaches as x goes to extremely high values. This value indicates how far above the curve the asymptote extends.

Vertical Asymptotes

As R(x) approaches the zeros of Q, the function will exhibit vertical asymptotes (x). This is because when x is at one of its zeros, Q(x) equals 0 (D’Hoker et al., 2019). This indicates that the value of Q will be a minimal number, either positive or negative, just to the left and right of the zero that denotes the function Q(x), respectively. In the immediate area to the left and right of that point, the value of R(x) will primarily take the form of a negative and positive number, respectively.

Oblique Asymptotes

If the function R(x) can be expressed in the form Formula, then it will have an oblique asymptote. When Q(x) ≫ 0, R(x) ≈ T (x). Consequently, the curve or line denoted by T(x) transforms into an oblique asymptote. To quote an example, let us take R(x) =Formula

In this instance, the degree of P(x) is higher than that of Q (x) (D’Hoker et al., 2019). Therefore, there can’t be a horizontal asymptote. However, there will be an asymptote in the vertical direction when x equals -1. This is because the point in question is the zero of the polynomial in the question’s denominator.

Conclusion

As a rule, rational functions and the graphs representing them take one of three asymptotes: horizontal, vertical, or oblique. The value of the denominator determines the difference between both asymptotes, as was pointed out in this discussion. Due to these distinctions, rational functions are in a position to adequately describe the relationship that exists between velocity, range, and time. Therefore, rational functions and graphs are crucial mathematically and in real-life situations.

References

D’Hoker, E., Green, M. B., & Pioline, B. (2019). . Communications in Number Theory and Physics, 13(2), 351–462. Web.

Lokot, T., Abramov, O., & Mehler, A. (2021). . PLOS ONE, 16(11). Web.

Peraro, T. (2019). . Journal of High Energy Physics, 2019(7). Web.

More related papers Related Essay Examples
Cite This paper
You're welcome to use this sample in your assignment. Be sure to cite it correctly

Reference

IvyPanda. (2024, May 7). Rational Functions and Their Real-World Applications. https://ivypanda.com/essays/rational-functions-and-their-real-world-applications/

Work Cited

"Rational Functions and Their Real-World Applications." IvyPanda, 7 May 2024, ivypanda.com/essays/rational-functions-and-their-real-world-applications/.

References

IvyPanda. (2024) 'Rational Functions and Their Real-World Applications'. 7 May.

References

IvyPanda. 2024. "Rational Functions and Their Real-World Applications." May 7, 2024. https://ivypanda.com/essays/rational-functions-and-their-real-world-applications/.

1. IvyPanda. "Rational Functions and Their Real-World Applications." May 7, 2024. https://ivypanda.com/essays/rational-functions-and-their-real-world-applications/.


Bibliography


IvyPanda. "Rational Functions and Their Real-World Applications." May 7, 2024. https://ivypanda.com/essays/rational-functions-and-their-real-world-applications/.

If, for any reason, you believe that this content should not be published on our website, please request its removal.
Updated:
This academic paper example has been carefully picked, checked and refined by our editorial team.
No AI was involved: only quilified experts contributed.
You are free to use it for the following purposes:
  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment
1 / 1