Updated:

Wind and Solar Energy as a Sources of Alternative Energy Research Paper

Exclusively available on Available only on IvyPanda® Made by Human No AI

Introduction

There is an urgent need for dependable, efficient, and low-cost energy to alleviate problems of energy insecurity as well as environmental pollution. For example, Jacobson and Masters (2001) proposed that the U.S. could meet its Kyoto Protocol obligations for decreasing carbon dioxide discharges by substituting 60% of its coal production plants with wind energy turbines to supplement the country’s energy requirements (p.1438).

Fthenakis, Mason, and Zweibel (2009) also examined the economical, geographical and technical viability of solar power to supplement the energy requirements of the U.S. and concluded that it was possible to substitute the current fossil fuel energy infrastructure with solar energy in order to decrease carbon emissions to internationally accepted levels (p.397).

There is no doubt that efforts to adopt renewable, effective and low-cost energy options have attracted global attention. Consequently, this paper will compare two forms renewable energy (wind and solar energy) in terms of cost, efficiency, energy produced, resources needed, environmental impact and maintenance.

Wind Turbine Energy Technology

Wind turbines usually convert wind energy into electricity. Generally, a gearbox rotates the turbine rotor into fast-rotating gears that eventually transform mechanical energy into electricity in a generator. Although a number of current turbines are gearless and less proficient, they are nonetheless useful when installed in buildings or residential homes (Jacobson & Delucchi, 2011, p.1157).

Solar Energy Technology

Solar photo-voltaics (PVs) refers to groups of cells with silicon materials that transform solar radiation into electricity. As of now, solar PVs are utilized in several different applications, ranging from residential home power generation to medium-scale use. On the other hand, concentrated solar power (CSP) systems utilize reflective lenses or mirrors to focus sunbeams on a liquid to warm it to a high temperature.

The heated liquid runs from the collector to a heat engine in which a part of the heat is transformed into electricity. There are various forms of CSP systems that permit the heat to be stocked up for several hours to facilitate production of electricity at night (Jacobson & Delucchi, 2011, p.1157).

Cost, Efficiency and Energy Produced via Wind and Solar Technology

Figure 1 provides the projected amount of power available globally from renewable energy with respect to raw resources available in high-energy regions. It is worth mentioning that these resources can plausibly be mined in the near future given the location as well as the low extraction costs involved.

Figure 1: Power Available in Energy Resources Worldwide If the Energy is Used in Conversion Devices, in Locations Where the Energy Resource is High, in Likely-Developable Locations, and in Delivered Electricity (For Wind and Solar Energy)

Energy TechnologyPower Worldwide (TW)Power in High-Energy Cocations (TW)Power in Likely Developable Locations (TW)Current Power Produced as Electricity (TW)
Wind1700a72-170b40-85c0.02
Solar PV6500d1300e3400.0013
CSP46009202400.00046

Source: Jacobson & Delucchi (2011).

Figure 1 demonstrates that only wind and solar energy can provide adequate power to meet global energy demands. For example, wind in developable regions can satisfy global energy demands up to about 4 times over while areas with solar energy potential can meet global demands by over 18 times over (Jacobson & Delucchi, 2011, p.1159). Figure 2 illustrates a model of wind resources at 100m in the hub height range of wind turbines.

Map of the yearly averaged world wind speed.
Figure 2. Map of the Yearly Averaged World Wind Speed. Source: Jacobson & Delucchi (2011).

The global wind energy potential (available over the world’s ocean surface and land at 100m assuming that all wind at speeds is utilized to power wind turbines) has been estimated at 1700 TW. About half of this wind energy (1700 TW) is found in areas that can be extracted feasibly and efficiently (Jacobson & Delucchi, 2011, p.1159).

Resources Required for Wind and Solar Systems

Jacobson and Delucchi (2011) estimate that both solar and wind make up 90% of the future energy supply on the basis of their relative availability (p.1160). Solar PV is split into 70% power-plant and 30% rooftop on the basis of an assessment of the expected available rooftop area.

Rooftop PV has three main benefits: it does not need new land surface; it can be incorporated into a hybrid solar infrastructure that generates electricity, light, and heat for onsite use; and it neither requires an electricity transmission nor distribution infrastructure. The authors suggest that approximately 90,000 solar power plants and about 4 million wind turbines are required to satisfy global energy demands (Jacobson & Delucchi, 2011, p.1160).

The material required for wind turbine energy includes carbon-filament reinforced plastic (for rotor blades); glass-fiber reinforced plastic (for rotor blades); wood epoxy (rotor blades); aluminum (for nacelles); magnetic materials (for gearboxes); pre-stressed concrete (for towers); and steel materials (for rotors, nacelles, towers, etc).

It is worth mentioning that most of these resources are available in abundance supply. For instance, the main components of concrete (i.e. limestone, sand, and gravel) are extensively available at lower costs and can be re-used (Jacobson & Delucchi, 2011, p.1161). On the other hand, the required resources for solar PVs include copper indium sulfide/selenide; cadmium telluride; micro-crystalline silicon; polycrystalline silicon; and amorphous silicon.

Nonetheless, it is important to note that the power generated via silicon PV technologies is constrained by the limited availability of silver materials which are utilized as electrodes (Jacobson & Delucchi, 2011, p.1162). Nevertheless, given that most of resources required for the installation of renewable energy plants are in abundance supply, both wind and solar energy technologies provide low-cost, environmental-friendly and efficient energy options to meet global demand.

References

Fthenakis, V., Mason, J., & Zweibel, K. (2009). The technical, geographical, and economic feasibility of solar energy to supply the energy needs of the US. Energy Policy, 37, 387–399.

Jacobson, M., & Delucchi, M. (2011). Providing all global energy with wind, water, and solar, Part I: Technologies, energy resources, quantities and areas of infrastructures, and materials. Energy Policy, 39, 1154-1169.

Jacobson, M., & Masters, G. (2001). Exploiting wind versus coal. Science, 293, 1438.

More related papers Related Essay Examples
Cite This paper
You're welcome to use this sample in your assignment. Be sure to cite it correctly

Reference

IvyPanda. (2018, November 6). Wind and Solar Energy as a Sources of Alternative Energy. https://ivypanda.com/essays/wind-and-solar-energy/

Work Cited

"Wind and Solar Energy as a Sources of Alternative Energy." IvyPanda, 6 Nov. 2018, ivypanda.com/essays/wind-and-solar-energy/.

References

IvyPanda. (2018) 'Wind and Solar Energy as a Sources of Alternative Energy'. 6 November.

References

IvyPanda. 2018. "Wind and Solar Energy as a Sources of Alternative Energy." November 6, 2018. https://ivypanda.com/essays/wind-and-solar-energy/.

1. IvyPanda. "Wind and Solar Energy as a Sources of Alternative Energy." November 6, 2018. https://ivypanda.com/essays/wind-and-solar-energy/.


Bibliography


IvyPanda. "Wind and Solar Energy as a Sources of Alternative Energy." November 6, 2018. https://ivypanda.com/essays/wind-and-solar-energy/.

If, for any reason, you believe that this content should not be published on our website, please request its removal.
Updated:
This academic paper example has been carefully picked, checked and refined by our editorial team.
No AI was involved: only quilified experts contributed.
You are free to use it for the following purposes:
  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment
Privacy Settings

IvyPanda uses cookies and similar technologies to enhance your experience, enabling functionalities such as:

  • Basic site functions
  • Ensuring secure, safe transactions
  • Secure account login
  • Remembering account, browser, and regional preferences
  • Remembering privacy and security settings
  • Analyzing site traffic and usage
  • Personalized search, content, and recommendations
  • Displaying relevant, targeted ads on and off IvyPanda

Please refer to IvyPanda's Cookies Policy and Privacy Policy for detailed information.

Required Cookies & Technologies
Always active

Certain technologies we use are essential for critical functions such as security and site integrity, account authentication, security and privacy preferences, internal site usage and maintenance data, and ensuring the site operates correctly for browsing and transactions.

Site Customization

Cookies and similar technologies are used to enhance your experience by:

  • Remembering general and regional preferences
  • Personalizing content, search, recommendations, and offers

Some functions, such as personalized recommendations, account preferences, or localization, may not work correctly without these technologies. For more details, please refer to IvyPanda's Cookies Policy.

Personalized Advertising

To enable personalized advertising (such as interest-based ads), we may share your data with our marketing and advertising partners using cookies and other technologies. These partners may have their own information collected about you. Turning off the personalized advertising setting won't stop you from seeing IvyPanda ads, but it may make the ads you see less relevant or more repetitive.

Personalized advertising may be considered a "sale" or "sharing" of the information under California and other state privacy laws, and you may have the right to opt out. Turning off personalized advertising allows you to exercise your right to opt out. Learn more in IvyPanda's Cookies Policy and Privacy Policy.

1 / 1