Alternate processing methods for xrays(radiography) Research Paper

Exclusively available on Available only on IvyPanda® Made by Human No AI

Radiographic film processing involves a process where an exposed film is subjected to specific treatment to enable clear visualization of exposed parts to enable identification of abnormalities under scrutiny for an effective and conclusive diagnosis. It is the production of images on a radioactive sensitive material using non-destructive semiconductor failure technique of analysis.

This method utilized the principle of difference in absorption capacity for various body parts, where more dense regions (bones) absorbs majority of exposed light as opposed to less dense regions (tissues and voids), the former will be clearly demarcated and thus abnormalities easily identified (National Research Council 135).

These methods include; Rapid processing, extended processing, Dry processing (Thermographic processing and Photothermographic processing), and daylight processing among others. This paper attempts to evaluate the alternate processing methods for radiography, their pros and cons, as well as the way they work.

Rapid processing method considers the time taken to produce a single image. This processing method takes only thirty minutes to produce a radiographic image without interfering with the quality of image. This is an improvement from the ninety minutes taken by the standard processing methods.

This becomes a beneficial factor for some emergency cases like angiography, surgery and other special procedures that require fast production of radiographic images to be used by physicians in the diagnosis, and treatment of patients. However, the processing method is very expensive, and the radiation dose is very high compared to standard processing methods (Bushong 203).

Extended processing radiography is particularly useful in mammography considering its extended processing, greater image contrast and lower radiation dose. However the processing method takes long to drop. Daylight processing has come to save radiology on the need to depend on the dark room for the process.

In Daylight processing the film is automatically extracted from a cassette and is run into the process. These processors require very little space and can accommodate different sizes of films (Bushong 203). This processing method has an advantage of taking less time, usually 15 second to insert the cassette into the daylight loader and retrieve a fresh cassette. To add to this, quality of the film produced under the daylight processing is high.

Dry processing method is a method which produces images without the use of wet chemistry. This processing method has several advantages which include; reduced chemical cost, less environmental harm and higher output among others. There are two major types of processing that fall under this method namely; Photothermographic processing and Thermographic processing.

Thermographic process utilises heat source called print head to heat and produce a visible image. The electric energy in the print head is converted y the print head with the use of resistive elements. The processing method produces no latent image because organic silver salts are directly developed by the application of localized heat. One disadvantage of this processing method is that it results to pixilated images, and loss of image compared to other methods.

Photothermographic processing uses low power modulated laser beam to record the image signal on the film and this way, it integrates latent image. It has a dwell time of about fifteen second, and thus, it is a reliable method in terms of time (Bushong 204). The laser beam can also be modulated over a very short time. However, the discrete head size of this process print head and its physical contact with the film media makes it produce a latent image.

In conclusion, radiographic imaging has undergone a rapid transformation as doctors and radiologists seek to save time, increase output, and reduce radiation doses on their patients. More important is the need to produce a quality image and reduce the energy requires running the equipment when producing a film.

Works Cited

Bushong, Stewart. Radiologic science for technologists: physics, biology, and protection. 9th ed. St. Louis Mo.: Mosby/Elsevier, 2008. Print.

National Research Council. Radiation source use and replacement: abbreviated version. Washington, D.C.: National Academies Press, 2008. Print.

More related papers Related Essay Examples
Cite This paper
You're welcome to use this sample in your assignment. Be sure to cite it correctly

Reference

IvyPanda. (2018, October 31). Alternate processing methods for xrays(radiography). https://ivypanda.com/essays/alternate-processing-methods-for-xraysradiography/

Work Cited

"Alternate processing methods for xrays(radiography)." IvyPanda, 31 Oct. 2018, ivypanda.com/essays/alternate-processing-methods-for-xraysradiography/.

References

IvyPanda. (2018) 'Alternate processing methods for xrays(radiography)'. 31 October.

References

IvyPanda. 2018. "Alternate processing methods for xrays(radiography)." October 31, 2018. https://ivypanda.com/essays/alternate-processing-methods-for-xraysradiography/.

1. IvyPanda. "Alternate processing methods for xrays(radiography)." October 31, 2018. https://ivypanda.com/essays/alternate-processing-methods-for-xraysradiography/.


Bibliography


IvyPanda. "Alternate processing methods for xrays(radiography)." October 31, 2018. https://ivypanda.com/essays/alternate-processing-methods-for-xraysradiography/.

If, for any reason, you believe that this content should not be published on our website, please request its removal.
Updated:
This academic paper example has been carefully picked, checked and refined by our editorial team.
No AI was involved: only quilified experts contributed.
You are free to use it for the following purposes:
  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment
Privacy Settings

IvyPanda uses cookies and similar technologies to enhance your experience, enabling functionalities such as:

  • Basic site functions
  • Ensuring secure, safe transactions
  • Secure account login
  • Remembering account, browser, and regional preferences
  • Remembering privacy and security settings
  • Analyzing site traffic and usage
  • Personalized search, content, and recommendations
  • Displaying relevant, targeted ads on and off IvyPanda

Please refer to IvyPanda's Cookies Policy and Privacy Policy for detailed information.

Required Cookies & Technologies
Always active

Certain technologies we use are essential for critical functions such as security and site integrity, account authentication, security and privacy preferences, internal site usage and maintenance data, and ensuring the site operates correctly for browsing and transactions.

Site Customization

Cookies and similar technologies are used to enhance your experience by:

  • Remembering general and regional preferences
  • Personalizing content, search, recommendations, and offers

Some functions, such as personalized recommendations, account preferences, or localization, may not work correctly without these technologies. For more details, please refer to IvyPanda's Cookies Policy.

Personalized Advertising

To enable personalized advertising (such as interest-based ads), we may share your data with our marketing and advertising partners using cookies and other technologies. These partners may have their own information collected about you. Turning off the personalized advertising setting won't stop you from seeing IvyPanda ads, but it may make the ads you see less relevant or more repetitive.

Personalized advertising may be considered a "sale" or "sharing" of the information under California and other state privacy laws, and you may have the right to opt out. Turning off personalized advertising allows you to exercise your right to opt out. Learn more in IvyPanda's Cookies Policy and Privacy Policy.

1 / 1