Conceptual Structure of the Chemical Revolution Essay

Exclusively available on Available only on IvyPanda® Made by Human No AI

There have been many radical changes in concepts of science of the 17th century where new scientific concepts and laws replaced old ones most notably chemical revolution. One of the revolutionary conceptual changes occurred when phlogiston theory of Stahl was replaced by the oxygen theory of Lavoisier.

According to the phlogiston theory popular in the 17th century, when substances undergo combustion, they absorb or release a substance called phlogiston. However, the development of Lavoisier’s oxygen theory in the late 18th century marked a chemical revolution for it introduced new and different concepts.

This paper will describe a theory of conceptual change in scientific history with regard to Stahl’s phlogiston theory and Lavoisier’s oxygen theory.

The phlogiston theory was based on medieval conceptual structure which held that all matter on Earth is composed of three principles viz. mercury which represents the liquid part of the earth, sulfur which represents inflammability, and salt representing inertness. The theory held that during combustion, “a metal releases a sulfurous substance known as phlogiston that has a negative weight leaving behind a heavier residue called calx” (Thagard 184).

However, Lavoisier’s oxygen theory caused a revolution to these concepts by establishing that release of oxygen gas occurs when a metal undergoes combustion and absorption occurs in calcinations; the reverse process of combustion. In addition, the theory established that calx residue is the metal that combined with oxygen hence accounting for the increase in weight in the calcinations process.

This theory is different from Stahl’s theory which proposed that a negative weight substance (phlogiston) lost by the metal during combustion, was responsible for increase in weight. Consequently, Stahl’s conceptual structure involving phlogiston was replaced with Lavoisier’s new concepts.

In explaining conceptual change in science, a description of the development of new conceptual structures and their impact on the existing concepts that lead to the replacement of the old concepts is important. A description of the stages of Lavoisier’s new conceptual structures is important in understanding what constitutes theory of conceptual change.

Nersessian posits that, “a conceptual structure consists of many concepts and related ideas that can be described as a network of nodes (concepts) that are linked together” (14). A conceptual change introduces new concepts and ideas that replace or eliminate the existing nodes (concepts) leading to establishment of new rules.

Conceptual revolution caused by replacement of either partial or entire concepts of a theory leads to restructuring of the theory to fit into the new ideas. A change in concepts leads to theory change that influences the belief of people in particular disciplines.

Stahl proposed the phlogiston theory, which was a different concept from the then popular view proposed by Aristotle holding that matter is composed of four elements namely, earth, air, fire and water. Stahl (1723-1730) proposed that matter consisted of three principles namely; the inflammable principle, phlogiston, liquefiable principle, mercury, and salt. He explained that substances such as sulfur were inflammable because they contained the principle of inflammability.

He further explained the reverse process, calcinations (like rusting) as processes that occur due to a metal releasing phlogiston and respiration due to the body releasing a phlogiston into the atmosphere. In addition, Stahl’s concepts explained that the principles made up simple ‘mixts’ while many ‘mixts’ made up a compound.

Lavoisier began his experiments in 1772 culminating in the development of the oxygen theory in 1789. He observed that air is released (effervescence) when metals react with acids and that calcinations involved increases weight of the resultant oxides. At this point, Lavoisier concluded that calcinations and combustion were due to air present in metals.

In 1774, Lavoisier added new ideas to his earlier concepts when he discovered that sulfur and phosphorus increased in weight after combustion.

In 1777, Lavoisier described the active agent of combustion as pure air. He further suggested that a distinct active part of atmospheric air was responsible for the increase in weight during combustion and calcification. Lavoisier further identified four distinct components of atmospheric air.

At the same period, Scheele, Lavoisier and Priestley were able to isolate pure active ingredient of air responsible for calcinations and combustion. At this point, Lavoisier outlined the weakness of phlogiston theory for failure to isolate the phlogiston that according to Stahl, explained the increase in mass of substances after combustion.

In 1780s, Lavoisier was able to develop the oxygen theory completely overturning the concepts of phlogiston theory. He described the active pure component of air as the ‘principe oxygine’ or oxygen that was responsible for combustion. He also described the heat or fire produced during combustion as ‘caloric’ but noted that air was responsible for the heat produced during combustion rather than the combustible elements proposed by phlogiston theory.

He further noted that metals burnt in oxygen to produce oxides while nonmetals produced heat or light during combustion. Through the continuous and cumulative development of new ideas and concepts, Lavoisier was able to point out the limitations of Stahl’s phlogiston theory and developed the oxygen theory to replace it.

The theory of conceptual change involves a continuous and cumulative development of new concepts that builds on existing ideas and finally culminates into a new theory that replaces the existing one. Lavoisier, in 1772 had remote idea that air is involved during combustion; an idea he developed further with new evidence and innovations to finally give out the oxygen theory in 1783 that disputed the phlogiston theory.

The theory of conceptual change must not only explain the origin of conceptual structures in science, but also explain how they rival the existing concepts. In addition, this theory should also explain the acceptability of the new concepts by the larger scientific community.

Two theories can explain the revolutionary conceptual change in science; the accretion and gestalt theories even though the accretion theory is insufficient as it avoids the cumulative and continuous organization of ideas into a theory.

The accretion theory outlines the build up of new ideas into a new-conceptual organization that replaces the existing ones. The views held by Stahl are contrast those held by Lavoisier.

The phlogiston theory maintains that metals are composed of calxes and phlogistons are released during combustion. On the other hand, the new conceptual scheme by Lavoisier holds that the oxygen and metals make up the calxes (oxides). The conceptual change involved introduction of new concepts and replacement of the old conceptual scheme.

The Gestalt Switch theory proposed by Kuhn in 1970 contends that conceptual change is a paradigm shift from the existing concepts and does not involve the reorganization of ideas that goes into a scientific concept.

However, during the development of the oxygen theory, Lavoisier did not make a paradigm shift in ideas but rather built on his ideas eventually coming up with the oxygen theory, a major contribution to the chemical revolution. An ideal theory for conceptual change entails innovations, scientific discovery, and computational research.

Works Cited

Nersessian, Nancy. “Mental Modeling in Conceptual Change.” The Handbook of Conceptual Change 4.2 (2008): 12-19.

Thagard, Paul. “The Conceptual Structure of Chemical Revolution”. Philosophy of Science 57.2 (1990): 183-209.

More related papers Related Essay Examples
Cite This paper
You're welcome to use this sample in your assignment. Be sure to cite it correctly

Reference

IvyPanda. (2018, May 28). Conceptual Structure of the Chemical Revolution. https://ivypanda.com/essays/conceptual-structure-of-the-chemical-revolution/

Work Cited

"Conceptual Structure of the Chemical Revolution." IvyPanda, 28 May 2018, ivypanda.com/essays/conceptual-structure-of-the-chemical-revolution/.

References

IvyPanda. (2018) 'Conceptual Structure of the Chemical Revolution'. 28 May.

References

IvyPanda. 2018. "Conceptual Structure of the Chemical Revolution." May 28, 2018. https://ivypanda.com/essays/conceptual-structure-of-the-chemical-revolution/.

1. IvyPanda. "Conceptual Structure of the Chemical Revolution." May 28, 2018. https://ivypanda.com/essays/conceptual-structure-of-the-chemical-revolution/.


Bibliography


IvyPanda. "Conceptual Structure of the Chemical Revolution." May 28, 2018. https://ivypanda.com/essays/conceptual-structure-of-the-chemical-revolution/.

If, for any reason, you believe that this content should not be published on our website, please request its removal.
Updated:
This academic paper example has been carefully picked, checked and refined by our editorial team.
No AI was involved: only quilified experts contributed.
You are free to use it for the following purposes:
  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment
Privacy Settings

IvyPanda uses cookies and similar technologies to enhance your experience, enabling functionalities such as:

  • Basic site functions
  • Ensuring secure, safe transactions
  • Secure account login
  • Remembering account, browser, and regional preferences
  • Remembering privacy and security settings
  • Analyzing site traffic and usage
  • Personalized search, content, and recommendations
  • Displaying relevant, targeted ads on and off IvyPanda

Please refer to IvyPanda's Cookies Policy and Privacy Policy for detailed information.

Required Cookies & Technologies
Always active

Certain technologies we use are essential for critical functions such as security and site integrity, account authentication, security and privacy preferences, internal site usage and maintenance data, and ensuring the site operates correctly for browsing and transactions.

Site Customization

Cookies and similar technologies are used to enhance your experience by:

  • Remembering general and regional preferences
  • Personalizing content, search, recommendations, and offers

Some functions, such as personalized recommendations, account preferences, or localization, may not work correctly without these technologies. For more details, please refer to IvyPanda's Cookies Policy.

Personalized Advertising

To enable personalized advertising (such as interest-based ads), we may share your data with our marketing and advertising partners using cookies and other technologies. These partners may have their own information collected about you. Turning off the personalized advertising setting won't stop you from seeing IvyPanda ads, but it may make the ads you see less relevant or more repetitive.

Personalized advertising may be considered a "sale" or "sharing" of the information under California and other state privacy laws, and you may have the right to opt out. Turning off personalized advertising allows you to exercise your right to opt out. Learn more in IvyPanda's Cookies Policy and Privacy Policy.

1 / 1