Updated:

Artificial Intelligence and Machine Learning Essay

Exclusively available on Available only on IvyPanda® Made by Human No AI

Introduction

The appropriate handling of client complaints is unquestionably the most crucial aspect of offering exceptional customer service. Customers post unprompted reviews of one’s goods and services on online forums, social media, and pretty much anywhere else on the internet. And since customers feel most obliged to express their ideas when they are unhappy, spontaneous feedback is typically negative. These internet complaints are increasing daily and might be challenging to control. Artificial Intelligence (AI) and Machine Learning (ML) are the recent tools that can be used by government agencies to enhance the process of managing complaints.

Discussion

Giving machines access to data sources and allowing them to learn the knowledge without being explicitly taught is referred to as machine learning. Large amounts of adequately structured data are produced by customer service, for example, when consumers ask queries and support teams respond (Gacanin & Wagner, 2019; Marinchak et al., 2018). The solution is to classify customer complaints using machine learning. Wherever they may appear, client comments can be tracked by AI-powered text analysis tools to identify those that are complaints, route them automatically to the right team, and analyze them for immediate valuable insights (Roldos, 2020).

The industry tested tens of thousands of messages and offers in the fall of 2020 while collaborating with the AI start-up OfferFit, changing the creative content, channel, and delivery times. It redesigned its organization to focus on client acquisition, service, and renewal and started utilizing AI to schedule service calls more effectively, support call center agents’ cross-sell recommendations, and reach out to customers about upgrading their wireless systems (Edelman & Abraham, 2022). Brinks increased A/B testing from two or three tests per day to almost 50,000 tests in less than two years (Edelman & Abraham, 2022).

However, not all cases of the use of ML and AI technologies in managing customer complaints were successful. Giving machines access to data sources and allowing them to learn the knowledge without being explicitly taught is referred to as machine learning. Large amounts of adequately structured data are produced by customer service, for example, when consumers ask queries and support teams respond. According to F33 (2021), the harsh truth is that, despite the fact that artificial intelligence (AI) and machine learning (ML) are currently very trendy terms and that almost every tech company’s product and solution is AI-enabled, the majority of the customer’s entities have largely failed to implement ML within their own organizations. It is common for an enterprise to stagnate when there are too many ideas or prospects for one to evaluate (“How can AI,” n.d.). This could be due to a lack of interest in committing to one idea because it is likely that a better machine-learning project will emerge.

There are both benefits and challenges to the use of AI and ML in the customer complaint resolution process. A company’s capacity to deliver a customer experience that competes with the competition depends on its ability to provide quicker solutions, 24/7 support, and predictive learning (Vaught, n.d.). Today’s high expectations for customer service make it impossible for a company to ignore AI-powered support systems. AI integration isn’t always simple, though. An enterprise’s support staff will need to adjust in a variety of ways.

Institutions may maximize the potential of their extensive multilingual databases by using AI. They can also reach international markets more quickly. For example, language technologies like NMT make translation faster and less expensive. When it comes to translating vast volumes of text and detecting languages, no human translator can compete with a machine. AI allows greater scalability and scope, whether for gisting purposes or content intended for post-editing by human translators. A deep learning technique called NMT enables MT engines to train on their own. It employs a synthetic neural network, which is akin to how one’s brain functions.

Conclusion

In summary, the most critical component of providing excellent customer service is the proper management of customer complaints. Customer complaints can be categorized with the aid of machine learning. The ability of a company to provide a customer experience depends on that business’s power to offer quicker answers, round-the-clock service, and predictive knowledge. An entity cannot disregard AI-powered support systems, given the high standards for customer service that exist today.

References

Edelman, D. C. & Abraham, M. (2022). Web.

Gacanin, H. & Wagner, M. (2019). Artificial intelligence paradigm for customer experience management in next-generation networks: Challenges and perspectives. IEEE Network, 33(2), 188-194.

(n.d.). Web.

F33. (2021). Why most companies fail with machine learning. LinkedIn. Web.

Marinchak, C., Forrest, E., & Hoanca, B. (2018). Artificial intelligence. International Journal Of E-Entrepreneurship And Innovation, 8(2), 14-24.

Roldos, I. (2020). Web.

Vaught, L. (n.d.). Web.

More related papers Related Essay Examples
Cite This paper
You're welcome to use this sample in your assignment. Be sure to cite it correctly

Reference

IvyPanda. (2023, November 19). Artificial Intelligence and Machine Learning. https://ivypanda.com/essays/artificial-intelligence-and-machine-learning/

Work Cited

"Artificial Intelligence and Machine Learning." IvyPanda, 19 Nov. 2023, ivypanda.com/essays/artificial-intelligence-and-machine-learning/.

References

IvyPanda. (2023) 'Artificial Intelligence and Machine Learning'. 19 November.

References

IvyPanda. 2023. "Artificial Intelligence and Machine Learning." November 19, 2023. https://ivypanda.com/essays/artificial-intelligence-and-machine-learning/.

1. IvyPanda. "Artificial Intelligence and Machine Learning." November 19, 2023. https://ivypanda.com/essays/artificial-intelligence-and-machine-learning/.


Bibliography


IvyPanda. "Artificial Intelligence and Machine Learning." November 19, 2023. https://ivypanda.com/essays/artificial-intelligence-and-machine-learning/.

If, for any reason, you believe that this content should not be published on our website, please request its removal.
Updated:
This academic paper example has been carefully picked, checked and refined by our editorial team.
No AI was involved: only quilified experts contributed.
You are free to use it for the following purposes:
  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment
Privacy Settings

IvyPanda uses cookies and similar technologies to enhance your experience, enabling functionalities such as:

  • Basic site functions
  • Ensuring secure, safe transactions
  • Secure account login
  • Remembering account, browser, and regional preferences
  • Remembering privacy and security settings
  • Analyzing site traffic and usage
  • Personalized search, content, and recommendations
  • Displaying relevant, targeted ads on and off IvyPanda

Please refer to IvyPanda's Cookies Policy and Privacy Policy for detailed information.

Required Cookies & Technologies
Always active

Certain technologies we use are essential for critical functions such as security and site integrity, account authentication, security and privacy preferences, internal site usage and maintenance data, and ensuring the site operates correctly for browsing and transactions.

Site Customization

Cookies and similar technologies are used to enhance your experience by:

  • Remembering general and regional preferences
  • Personalizing content, search, recommendations, and offers

Some functions, such as personalized recommendations, account preferences, or localization, may not work correctly without these technologies. For more details, please refer to IvyPanda's Cookies Policy.

Personalized Advertising

To enable personalized advertising (such as interest-based ads), we may share your data with our marketing and advertising partners using cookies and other technologies. These partners may have their own information collected about you. Turning off the personalized advertising setting won't stop you from seeing IvyPanda ads, but it may make the ads you see less relevant or more repetitive.

Personalized advertising may be considered a "sale" or "sharing" of the information under California and other state privacy laws, and you may have the right to opt out. Turning off personalized advertising allows you to exercise your right to opt out. Learn more in IvyPanda's Cookies Policy and Privacy Policy.

1 / 1